The Impact of Grazing Interval on Production and Persistence of a Ryegrass/White Clover Pasture in the Subtropics

Bill Fulkerson and Katrina Slack

Senior Research Scientist & Technical Officer NSW Agriculture WOLLONGBAR NSW 2477

In subtropical dairy regions of Australia, temperate pasture provides a vital, high quality feed in winter and spring. Whilst ample solar radiation, relatively fertile soils and irrigation lead to very high DM yields (20,000 kg DM/ha - Lowe and Bowdler, 1984; >17,000 kg DM/ha - Fulkerson and Slack, unpub. data), perennial ryegrasses lack persistency. Commonly, farmers need to 'thicken up' a third year ryegrass/clover pasture by drilling in annual ryegrass and then completely replant after the third year. The decline in plant population is probably partly due to ingression of summer grasses.

MATERIAL AND METHODS

A study commenced in March 1991, to determine the relative importance of several management factors - including defoliation interval - on production and persistence of ryegrass/white clover swards.

The defoliation interval aspect of the study is reported here for plots sown to 8 or 35 kg Ellett ryegrass and 4 kg Haifa white clover, irrigated and harvested with a rotary mover.

Defoliation treatments were: 2 or 4 weeks or 'flexible' harvest.

The criteria for 'flexible' harvest was based on 'when the plant was ready' as:

- 1. Commencement of lodging
- 2. Significant infestation of rust
- 3. 3 leaves in ryegrass,

whichever happened first. In fact the 'flexible' interval varied from 21 to 51 days.

RESULTS

The seasonal DM yield for 2 and 4 weeks or 'flexible'

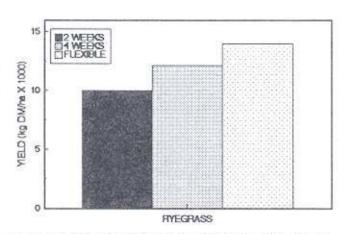


Figure 1: Kg DM/ha (May to November) for plots (n=48) defoliated at 2 or 4 weeks or 'flexible' (see text).

defoliation was significantly different (P <0.001) at $9,260 \pm 269$; $10,918 \pm 265$, $12,223 \pm 280$ (mean \pm se) kg DM/ha, respectively (Figure 1).

There was a significant interaction of defoliation with time (P < 0.001) with the differences between 2 and 4 weeks being greatest in winter (55%) and least in spring (11%) as shown in Figure 2.

Although plant densities were not significantly different up to November, significantly more (P = 0.022) ryegrass plants had survived the summer in April 1992 and there was significantly less (P<0.001) summer grass ingression for 4 weeks and 'flexible', as compared to 2 weeks, defoliation.

CONCLUSION

Relating time of defoliation to a relevant plant factor will, in most cases, increase pasture growth and also substantially enhance persistency of ryegrass. However, increase pasture growth will be counter-productive unless it is effectively utilised.

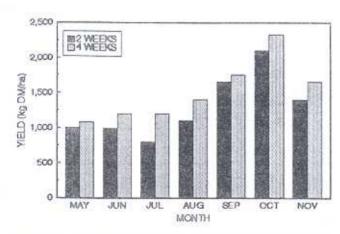


Figure 2: Kg DM/ha for each month from May to November for plots defoliated at 2 or 4 week interval.

REFERENCE

Lowe, K.F. and T.M.Bowdler (1988). The effect of height and frequency of defoliation on productivity of irrigated oats (Avena

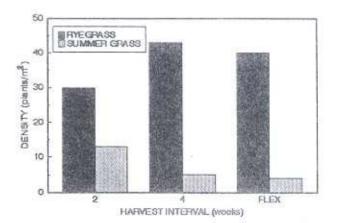


Figure 3: Ryegrass and summer grass (plant/m²) in April 1992, for plots defoliated at 2 or 4 weeks or 'flexible'.

strigosa cv. Saia) and perennial ryegrass (Lolium perenne cv. Kangaroo Valley) grown above or with barrel medic (Medicago truncatula cv. Jemalong). Australian Journal of Experimental Agriculture, 28: 57-67.